Mutation of glutamate 155 of the GABAA receptor beta2 subunit produces a spontaneously open channel: a trigger for channel activation.
نویسندگان
چکیده
Protein movements underlying ligand-gated ion channel activation are poorly understood. The binding of agonist initiates a series of conformational movements that ultimately lead to the opening of the ion channel pore. Although little is known about local movements within the GABA-binding site, a recent structural model of the GABA(A) receptor (GABA(A)R) ligand-binding domain predicts that beta2Glu155 is a key residue for direct interactions with the neurotransmitter (Cromer et al., 2002). To elucidate the role of the beta2Ile154-Asp163 region in GABA(A)R activation, each residue was individually mutated to cysteine and coexpressed with wild-type alpha1 subunits in Xenopus laevis oocytes. Seven mutations increased the GABA EC50 value (8- to 3400-fold), whereas three mutations (E155C, S156C, and G158C) also significantly increased the 2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl) pyridazinium (SR-95531) K(I) value. GABA, SR-95531, and pentobarbital slowed N-biotinylaminoethyl methanethiosulfonate modification of T160C and D163C, indicating that beta2Thr160 and beta2Asp163 are located in or near the GABA-binding site and that this region undergoes structural rearrangements during channel gating. Cysteine substitution of beta2Glu155 resulted in spontaneously open GABA(A)Rs and differentially decreased the GABA, piperidine-4-sulfonic acid (partial agonist), and SR-95531 sensitivities, indicating that the mutation perturbs ligand binding as well as channel gating. Tethering thiol-reactive groups onto beta2E155C closed the spontaneously open channels, suggesting that beta2Glu155 is a control element involved in coupling ligand binding to channel gating. Structural modeling suggests that the beta2 Ile154-Asp163 region is a protein hinge that forms a network of interconnections that couples binding site movements to the cascade of events leading to channel opening.
منابع مشابه
GABAA receptor subunit composition and functional properties of Cl- channels with differential sensitivity to zolpidem in embryonic rat hippocampal cells.
Using flow cytometry in conjunction with a voltage-sensitive fluorescent indicator dye (oxonol), we have identified and separated embryonic hippocampal cells according to the sensitivity of their functionally expressed GABAA receptors to zolpidem. Immunocytochemical and RT-PCR analysis of sorted zolpidem-sensitive (ZS) and zolpidem-insensitive (ZI) subpopulations identified ZS cells as postmito...
متن کاملAltered Channel Conductance States and Gating of GABAA Receptors by a Pore Mutation Linked to Dravet Syndrome
We identified a de novo missense mutation, P302L, in the γ-aminobutyric acid type A (GABAA) receptor γ2 subunit gene GABRG2 in a patient with Dravet syndrome using targeted next-generation sequencing. The mutation was in the cytoplasmic portion of the transmembrane segment M2 of the γ2 subunit that faces the pore lumen. GABAA receptor α1 and β3 subunits were coexpressed with wild-type (wt) γ2L ...
متن کاملImpact of subunit positioning on GABAA receptor function.
The major isoforms of the GABAA (gamma-aminobutyric acid type A) receptor are composed of two alpha, two beta and one gamma subunit. Thus alpha and beta subunits occur twice in the receptor pentamer. As it is well documented that different isoforms of alpha and beta subunits can co-exist in the same pentamer, the question is raised whether the relative position of a subunit isoform affects the ...
متن کاملThe interaction of the general anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single amino acid.
The gamma-aminobutyric acid type A (GABAA) receptor is a transmitter-gated ion channel mediating the majority of fast inhibitory synaptic transmission within the brain. The receptor is a pentameric assembly of subunits drawn from multiple classes (alpha1-6, beta1-3, gamma1-3, delta1, and epsilon1). Positive allosteric modulation of GABAA receptor activity by general anesthetics represents one l...
متن کاملMutation in the M1 Domain of the Acetylcholine Receptor α Subunit Decreases the Rate of Agonist Dissociation
We describe the kinetic consequences of the mutation N217K in the M1 domain of the acetylcholine receptor (AChR) alpha subunit that causes a slow channel congenital myasthenic syndrome (SCCMS). We previously showed that receptors containing alpha N217K expressed in 293 HEK cells open in prolonged activation episodes strikingly similar to those observed at the SCCMS end plates. Here we use singl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 50 شماره
صفحات -
تاریخ انتشار 2004